THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II

Homework 3 Suggested Solutions

1. (Exercise 6.4.2 of [BS11]) Let $g(x) := |x^3|$ for $x \in \mathbb{R}$. Find g'(x) and g''(x) for $x \in \mathbb{R}$, and g'''(x) for $x \neq 0$. Show that g'''(0) odes not exist.

Solution. By definition of g(x), we have that $g(x) = x^3$ for $x^3 \ge 0$ and $g(x) = -x^3$ for $x^3 < 0$. Since $x^3 \ge 0$ whenever $x \ge 0$ and $x^3 < 0$ whenever x < 0, this means that we can write the definition of g as

$$g(x) = \begin{cases} x^3, & x \ge 0\\ -x^3, & x < 0 \end{cases}$$

which means

$$g'(x) = \begin{cases} 3x^2, & x \ge 0\\ -3x^2, & x < 0 \end{cases} \text{ and } g''(x) = \begin{cases} 6x, & x \ge 0\\ -6x, & x < 0 \end{cases}$$

We can write g''(x) more succinctly as g''(x) = 6|x|. When $x \neq 0$, from what we found for g''(x), we see that

$$g'''(x) = \begin{cases} 6, & x > 0\\ -6, & x < 0 \end{cases}$$

and since $\lim_{x \to 0^+} \frac{g''(x)}{x} = 6$ while $\lim_{x \to 0^-} \frac{g''(x)}{x} = -6$, we see that g'''(0) does not exist.

2. (Exercise 6.4.4 of [BS11]) Show that if x > 0, then $1 + \frac{1}{2}x - \frac{1}{8}x^2 \le \sqrt{1+x} \le 1 + \frac{1}{2}x$.

Solution. We use Taylor's theorem for $f(x) = \sqrt{1+x}$ at $x_0 = 0$ up to n = 3. We have that $f(x_0) = 1$,

$$f'(x) = \frac{1}{2}(1+x)^{-\frac{1}{2}}, \quad f'(x_0) = \frac{1}{2}$$
$$f''(x) = -\frac{1}{4}(1+x)^{-\frac{3}{2}}, \quad f''(x_0) = -\frac{1}{4}$$
$$f'''(x) = \frac{3}{8}(1+x)^{-\frac{5}{2}}$$

and so we have that

$$f(x) = 1 + \frac{1}{2}x + R_1(x) = 1 + \frac{1}{2}x - \frac{1}{8}(1 + c_1)^{-\frac{3}{2}}x^2$$

$$f(x) = 1 + \frac{1}{2} - \frac{1}{8}x^2 + R_2(x) = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{3}{48}(1 + c_2)^{-\frac{5}{2}}x^3$$

for some $c_1, c_2 > 0$ and for x > 0. Note that for x > 0, $R_1(x) < 0$ while $R_2(x) > 0$, so we can conclude that for x > 0,

$$1 + \frac{1}{2}x - \frac{1}{8}x^2 \le \sqrt{1+x} \le 1 + \frac{1}{2}x$$

as required.

3. (Exercise 6.4.5 of [BS11]) Use the preceding exercise to approximate $\sqrt{1.2}$ and $\sqrt{2}$. What is the best accuracy you can be sure of, using this inequality?

Solution. Using the preceding exercise with x = 0.2 for $\sqrt{1.2}$ and x = 1 for $\sqrt{2}$, we have

$$1 + \frac{1}{2}(0.2) - \frac{1}{8}(0.2)^2 \le \sqrt{1.2} \le 1 + \frac{1}{2}(0.2) \Rightarrow 1.095 \le \sqrt{1.2} \le 1.2$$

and

$$1 + \frac{1}{2}(1) - \frac{1}{8}(1)^2 \le \sqrt{2} \le 1 + \frac{1}{2}(1) \Rightarrow 1.375 \le \sqrt{2} \le 1.5$$

Since $c_2 > 0$ in the expression for $R_2(x)$, then $(1+c)^{-\frac{5}{2}} < 1$ and so using this inequality, the best accuracy we can obtain is

$$R_3(0.2) \le \frac{3}{48} \cdot \frac{2}{10} = \frac{1}{80} = 0.0125$$

and

$$R_3(1) \le \frac{3}{48} \cdot 1 = \frac{1}{16} = 0.0625$$

4. (Exercise 6.4.9 of [BS11]) If $g(x) := \sin x$, show that the remainder term in Taylor's Theorem converges to zero as $n \to \infty$ for each x_0 and x.

Solution. By Taylor's theorem, we have that

$$g(x) = \sum_{k=0}^{n} \frac{g^{(k)}(x_0)}{k!} (x - x_0)^k + R_n(x) = \sum_{k=0}^{n} \frac{g^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{g^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}.$$

For some c between x and x_0 . In any case, since $g^{(n+1)}(x)$ is either sin x or cos x, we have that $|g^{(n+1)}(c)| \leq 1$, and so we have that

$$|R_n(x)| \le \left|\frac{g^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1}\right| \le \frac{(x-x_0)^{n+1}}{(n+1)!} \to 0 \quad \text{as } n \to +\infty$$

as required.

5. (Exercise 6.4.11 of [BS11]) If $x \in [0, 1]$ and $n \in \mathbb{N}$, show that

$$\left|\ln(1+x) - \left(x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1}\frac{x^n}{n}\right)\right| < \frac{x^{n+1}}{n+1}.$$

Use this to approximate ln 1.5 with an error less than 0.01. Less than 0.001.

Solution. We have that for $n \in \mathbb{N}$, $\ln^{(n)}(1+x) = (-1)^{n-1}(n-1)!(1+x)^{-n}$, so by Taylor's theorem centred at $x_0 = 0$, we have

$$\ln\left(1+x\right) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1} \frac{x^n}{n} + (-1)^n \frac{n!(1+c)^{-n}}{(n+1)!} x^{n+1}$$

for some c between x and 0. Then since $(1+c)^n \ge 1^n = 1$, we have

$$\left|\ln\left(1+x\right) - \left(x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1}\frac{x^n}{n}\right)\right| < \left|(-1)^n \frac{(1+c)^{-n}x^{n+1}}{n+1}\right| \le \frac{x^{n+1}}{n+1}$$

as required.

For ln 1.5 we are taking $x = \frac{1}{2}$. We require an accuracy up to 10^{-2} , so we require $\frac{1}{n+1} \cdot \frac{1}{2^{n+1}} < 10^{-2} \Leftrightarrow (n+1)2^{n+1} > 10^2$. When n = 3, we find that $(n+1)2^{n+1} = 4 \cdot 2^4 = 64$ while for n = 4, we have $(n+1)2^{n+1} = 5 \cdot 2^5 = 160 > 10^2$. So we compute the polynomial up to n = 4 and obtain $\ln 1.5 \approx 0.40$.

For an accuracy up to 10^{-3} , we require $(n + 1)2^{n+1} > 10^3$. We have that when $n = 6, (n+1)2^{n+1} = 7 \cdot 128 = 896$ while for $n = 7, (n+1)2^{n+1} = 8 \cdot 256 = 2048 > 10^3$. So we take n = 7 in the polynomial and obtain $\ln 1.5 \approx 0.405$.

6. (Exercise 6.4.15 of [BS11]) Let f be continuous on [a, b] and assume the second derivative f'' exists on (a, b). Suppose that the graph of f and the line segment joining the points (a, f(a)) and (b, f(b)) intersect at a point $(x_0, f(x_0))$ where $a < x_0 < b$. Show that there exists a point $c \in (a, b)$ such that f''(c) = 0.

Solution. We use the Mean Value Theorem multiple times. By the Mean Value Theorem applied to f on $[a, x_0]$ and $[x_0, b]$, there is a c_1 between a and x_0 and a c_2 between x_0 and b such that

$$f'(c_1) = \frac{f(x_0) - f(a)}{x_0 - a}, \quad f'(c_2) = \frac{f(b) - f(x_0)}{b - x_0}$$

and since we are on the same line segment joining (a, f(a)) to (b, f(b)), we have that $\frac{f(x_0) - f(a)}{x_0 - a} = \frac{f(b) - f(x_0)}{b - x_0}$, and so we have that $f'(c_1) = f'(c_2)$. Then using the Mean Value Theorem again, this time applied to f' on $[c_1, c_2]$, we obtain a c_3 in between c_1 and c_2 such that

$$f''(c_3) = \frac{f'(c_2) - f'(c_1)}{c_2 - c_1} = 0$$

as required.

References

[BS11] Robert G. Bartle and Donald R. Sherbert. Introduction to Real Analysis, Fourth Edition. Fourth. University of Illinois, Urbana-Champaign: John Wiley & Sons, Inc., 2011. ISBN: 978-0-471-43331-6.