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1. (Exercise 6.4.2 of [BS11]) Let g(z) := |z3| for z € R. Find ¢'(x) and ¢”(z) for x € R,
and ¢"'(z) for z # 0. Show that ¢”’(0) odes not exist.

Solution. By definition of g(z), we have that g(z) = 23 for z* > 0 and g(z) = —23

for 23 < 0. Since z® > 0 whenever z > 0 and 2® < 0 whenever z < 0, this means
that we can write the definition of g as

() 2, >0
x) = .
g -3, <0

which means
32 x>0 6x x>0
"(x) = ’ - and ¢"(z) = ' -
g() {—3952, <0 g'(@) {—6x, <0

We can write ¢”(x) more succinctly as ¢”(z) = 6|x|. When z # 0, from what we
found for ¢”(x), we see that

6, x>0
g/// (.I) —
—6, <0
and since lim £ — 6 while lim £ — —6, we see that ¢”(0) does not exist. <
z—0t+ 7 z—0— 7

2. (Exercise 6.4.4 of [BS11]) Show that if 2 > 0, then 1+ 1z — $2° < V142 < 1+ 3.

Solution. We use Taylor’s theroem for f(z) = /1 +x at 2o =0 up ton = 3. We
have that f(xg) =1,

fa)=50+a)h fla) =

frlay=—3042)3 o) = —
f(0) = 51 +a)

and so we have that

1 1 1
flz) =1+ 57 + Ri(x) =1+ 5%~ §<1 + cl)’%xQ

flo) =1+ 2 ng + Ry(z) =1+ 2t §$2 + @(1 + 02)_3353

for some ¢y, ¢y > 0 and for z > 0. Note that for z > 0, Ry(x) < 0 while Ry(z) > 0,
so we can conclude that for x > 0,

1 1 1
1+§x—§x2§\/1+x§1+§x

as required. <
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3. (Exercise 6.4.5 of [BS11]) Use the preceding exercise to approximate v/1.2 and v/2.
What is the best accuracy you can be sure of, using this inequality?

Solution. Using the preceding exercise with z = 0.2 for v/1.2 and z = 1 for v/2,
we have

1 1 1
1+5(02) - g(0.2)2 <SVI2<1+5(02) = 1095 <V12<12

and
1

1 1
1+2(1)—§(1)2§\/§§1+§(1):>1.375§\/§§ 1.5

5

Since ¢ > 0 in the expression for Ry(x), then (1 + ¢)2 < 1 and so using this
inequality, the best accuracy we can obtain is

3 2 1

2 = = 0.012
75(0. )_48 10 80 0.0125
and
R(1)<i 1:i:00625
48 16 ’ ’

<

4. (Exercise 6.4.9 of [BS11]) If g(x) := sinz, show that the remainder term in Taylor’s
Theorem converges to zero as n — oo for each xy and =x.

Solution. By Taylor’s theorem, we have that

n ) (2 ") (g
)= 3 T R0y = ST 0y

k=0

g(n—i-l)(
(n+1)!

‘) (z — 20)" .

For some ¢ between z and xo. In any case, since g""*!)(z) is either sin x or cos z, we
have that [¢"*(c)| < 1, and so we have that

n+1 ( )
(n+1)'

(x — x)" !

(n+1)! —0 asn— +oo

|[Ra(2)] < | Ty (@ — z0)™"

<

as required. |

5. (Exercise 6.4.11 of [BS11]) If € [0, 1] and n € N, show that

]32 I3 " In+1
In(1 —lr -4+ (D)) < .
n(l+z) (x 5 T3t + (—1) n)‘ e

Use this to approximate In 1.5 with an error less than 0.01. Less than 0.001.
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Solution. We have that for n € N, In™ (1 +z) = (=1)*'(n — 1)!(1 + )", so by
Taylor’s theorem centred at xq = 0, we have

x? @’ " nl(l+c¢)™"
1 1 = —_ — — —1 n—1< 1) n+1
n{ira)=o= gt gt )T ) (n+1)!
for some ¢ between x and 0. Then since (14 ¢)” > 1" = 1, we have
z? x? " (1 + C)—nxn-i-l pntl
l 1 — _— J— e —1 n—-17 < -1 n <
n(l+z) (x st3+ + (—1) n)‘ '( ) g <
as required.
1
For In 1.5 we are taking x = 5 We require an accuracy up to 1072, so we require
1 1
— <1072 & (n+1)2"" > 10%. When n = 3 ,we find that (n + 1)2"* =

4-2% = 64 while for n = 4, we have (n+1)2"" =5.25 = 160 > 10%. So we compute
the polynomial up to n = 4 and obtain In 1.5 ~ 0.40.

For an accuracy up to 1073, we require (n + 1)2""! > 103. We have that when
n=6,(n+1)2"" = 7.128 = 896 while for n = 7, (n+1)2""! = 8.256 = 2048 > 103.
So we take n = 7 in the polynomial and obtain In 1.5 ~ 0.405. |

6. (Exercise 6.4.15 of [BS11]) Let f be continuous on [a,b] and assume the second
derivative f” exists on (a,b). Suppose that the graph of f and the line segment
joining the points (a, f(a)) and (b, f(b)) intersect at a point (zg, f(xg)) where a <
xo < b. Show that there exists a point ¢ € (a,b) such that f(c) = 0.

Solution. We use the Mean Value Theorem multiple times. By the Mean Value
Theorem applied to f on [a,xo| and [zg, b], there is a ¢; between a and xy and a ¢,
between zy and b such that
x9) — fla b) — f(x
f/(cl):f( 0) f( )7 f/(c2):f<> f( 0)

To—a b— xo

and since we are on the same line segment joining (a, f(a)) to (b, f(b)), we have

_ b) —
that f(zo) = /@) = I I)) f(xo), and so we have that f'(¢;) = f'(ce). Then using
o — a — Xy
the Mean Value Theorem again, this time applied to f’ on [c1, ¢2], we obtain a ¢3 in

between ¢; and ¢y such that

f//(cg) —

as required. <

f'(ca) = f(c1)

C — C1

=0
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