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1. (Exercise 6.4.2 of [BS11]) Let g(x) := |x3| for x ∈ R. Find g′(x) and g′′(x) for x ∈ R,
and g′′′(x) for x ̸= 0. Show that g′′′(0) odes not exist.

Solution. By definition of g(x), we have that g(x) = x3 for x3 ≥ 0 and g(x) = −x3

for x3 < 0. Since x3 ≥ 0 whenever x ≥ 0 and x3 < 0 whenever x < 0, this means
that we can write the definition of g as

g(x) =

{
x3, x ≥ 0

−x3, x < 0

which means

g′(x) =

{
3x2, x ≥ 0

−3x2, x < 0
and g′′(x) =

{
6x, x ≥ 0

−6x, x < 0

We can write g′′(x) more succinctly as g′′(x) = 6|x|. When x ̸= 0, from what we
found for g′′(x), we see that

g′′′(x) =

{
6, x > 0

−6, x < 0

and since lim
x→0+

g′′(x)
x

= 6 while lim
x→0−

g′′(x)
x

= −6, we see that g′′′(0) does not exist. ◀

2. (Exercise 6.4.4 of [BS11]) Show that if x > 0, then 1+ 1
2
x− 1

8
x2 ≤

√
1 + x ≤ 1+ 1

2
x.

Solution. We use Taylor’s theroem for f(x) =
√
1 + x at x0 = 0 up to n = 3. We

have that f(x0) = 1,

f ′(x) =
1

2
(1 + x)−

1
2 , f ′(x0) =

1

2

f ′′(x) = −1

4
(1 + x)−

3
2 , f ′′(x0) = −1

4

f ′′′(x) =
3

8
(1 + x)−

5
2

and so we have that

f(x) = 1 +
1

2
x+R1(x) = 1 +

1

2
x− 1

8
(1 + c1)

− 3
2x2

f(x) = 1 +
1

2
− 1

8
x2 +R2(x) = 1 +

1

2
x− 1

8
x2 +

3

48
(1 + c2)

− 5
2x3

for some c1, c2 > 0 and for x > 0. Note that for x > 0, R1(x) < 0 while R2(x) > 0,
so we can conclude that for x > 0,

1 +
1

2
x− 1

8
x2 ≤

√
1 + x ≤ 1 +

1

2
x

as required. ◀
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3. (Exercise 6.4.5 of [BS11]) Use the preceding exercise to approximate
√
1.2 and

√
2.

What is the best accuracy you can be sure of, using this inequality?

Solution. Using the preceding exercise with x = 0.2 for
√
1.2 and x = 1 for

√
2,

we have

1 +
1

2
(0.2)− 1

8
(0.2)2 ≤

√
1.2 ≤ 1 +

1

2
(0.2) ⇒ 1.095 ≤

√
1.2 ≤ 1.2

and

1 +
1

2
(1)− 1

8
(1)2 ≤

√
2 ≤ 1 +

1

2
(1) ⇒ 1.375 ≤

√
2 ≤ 1.5

Since c2 > 0 in the expression for R2(x), then (1 + c)−
5
2 < 1 and so using this

inequality, the best accuracy we can obtain is

R3(0.2) ≤
3

48
· 2

10
=

1

80
= 0.0125

and

R3(1) ≤
3

48
· 1 =

1

16
= 0.0625.

◀

4. (Exercise 6.4.9 of [BS11]) If g(x) := sin x, show that the remainder term in Taylor’s
Theorem converges to zero as n → ∞ for each x0 and x.

Solution. By Taylor’s theorem, we have that

g(x) =
n∑

k=0

g(k)(x0)

k!
(x−x0)

k +Rn(x) =
n∑

k=0

g(k)(x0)

k!
(x−x0)

k +
g(n+1)(c)

(n+ 1)!
(x−x0)

n+1.

For some c between x and x0. In any case, since g(n+1)(x) is either sinx or cos x, we
have that |g(n+1)(c)| ≤ 1, and so we have that

|Rn(x)| ≤
∣∣∣∣g(n+1)(c)

(n+ 1)!
(x− x0)

n+1

∣∣∣∣ ≤ (x− x0)
n+1

(n+ 1)!
→ 0 as n → +∞

as required. ◀

5. (Exercise 6.4.11 of [BS11]) If x ∈ [0, 1] and n ∈ N, show that∣∣∣∣ln(1 + x)−
(
x− x2

2
+

x3

3
+ · · ·+ (−1)n−1x

n

n

)∣∣∣∣ < xn+1

n+ 1
.

Use this to approximate ln 1.5 with an error less than 0.01. Less than 0.001.
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Solution. We have that for n ∈ N, ln(n) (1 + x) = (−1)n−1(n− 1)!(1 + x)−n, so by
Taylor’s theorem centred at x0 = 0, we have

ln (1 + x) = x− x2

2
+

x3

3
+ · · ·+ (−1)n−1x

n

n
+ (−1)n

n!(1 + c)−n

(n+ 1)!
xn+1

for some c between x and 0. Then since (1 + c)n ≥ 1n = 1, we have∣∣∣∣ln (1 + x)−
(
x− x2

2
+

x3

3
+ · · ·+ (−1)n−1x

n

n

)∣∣∣∣ < ∣∣∣∣(−1)n
(1 + c)−nxn+1

n+ 1

∣∣∣∣ ≤ xn+1

n+ 1

as required.

For ln 1.5 we are taking x =
1

2
. We require an accuracy up to 10−2, so we require

1

n+ 1
· 1

2n+1
< 10−2 ⇔ (n+ 1)2n+1 > 102. When n = 3 ,we find that (n+ 1)2n+1 =

4 ·24 = 64 while for n = 4, we have (n+1)2n+1 = 5 ·25 = 160 > 102. So we compute
the polynomial up to n = 4 and obtain ln 1.5 ≈ 0.40.

For an accuracy up to 10−3, we require (n + 1)2n+1 > 103. We have that when
n = 6, (n+1)2n+1 = 7·128 = 896 while for n = 7, (n+1)2n+1 = 8·256 = 2048 > 103.
So we take n = 7 in the polynomial and obtain ln 1.5 ≈ 0.405. ◀

6. (Exercise 6.4.15 of [BS11]) Let f be continuous on [a, b] and assume the second
derivative f ′′ exists on (a, b). Suppose that the graph of f and the line segment
joining the points (a, f(a)) and (b, f(b)) intersect at a point (x0, f(x0)) where a <
x0 < b. Show that there exists a point c ∈ (a, b) such that f ′′(c) = 0.

Solution. We use the Mean Value Theorem multiple times. By the Mean Value
Theorem applied to f on [a, x0] and [x0, b], there is a c1 between a and x0 and a c2
between x0 and b such that

f ′(c1) =
f(x0)− f(a)

x0 − a
, f ′(c2) =

f(b)− f(x0)

b− x0

and since we are on the same line segment joining (a, f(a)) to (b, f(b)), we have

that
f(x0)− f(a)

x0 − a
=

f(b)− f(x0)

b− x0

, and so we have that f ′(c1) = f ′(c2). Then using

the Mean Value Theorem again, this time applied to f ′ on [c1, c2], we obtain a c3 in
between c1 and c2 such that

f ′′(c3) =
f ′(c2)− f ′(c1)

c2 − c1
= 0

as required. ◀

References

[BS11] Robert G. Bartle and Donald R. Sherbert. Introduction to Real Analysis, Fourth
Edition. Fourth. University of Illinois, Urbana-Champaign: John Wiley & Sons,
Inc., 2011. isbn: 978-0-471-43331-6.


